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The Crystal Structure of Phenylthiazolidinedione

By B. W. MATTHEWS*
Physics Department, University of Adelaide, Adelaide, South Australia

(Received 11 October 1963)

Crystals of phenylthiazolidinedione are monoclinic with space group P2,/a; the unit-cell dimen-

sions are

a=9620, b=6-751, ¢c=14-758 A; p=102°¢".

The crystal structure was solved by a partial interpretation of the three-dimensional Patterson
function, followed by the application of Woolfson’s (1956) improved ‘heavy atom’ technique.
The structural parameters of the heavy atoms, including anisotropic temperature factors, were
refined by the method of ‘differential difference’ syntheses; the positions of the hydrogen atoms
were found geometrically, and then refined. The final R index for the 1137 observed reflexions was

6:9%.

The thiazolidine ring is significantly aplanar, C(3) being 0-134 A from the best plane through

the remaining four ring atoms.

Introduction

Phenylthiazolidinedione (PTD) has a structural sim-
ilarity to many of the antiepileptiform drugs in
current use (e.g. phenobarbitone, dilantin, mesantoin
and epidon). Its pharmacological properties have
been investigated by Shulman (1957), who found
that PTD and related substances may have a use
in the treatment of epileptiform seizures. This analysis
of the crystal structure of PTD was undertaken firstly
because of the biochemical interest, and secondly
to determine the dimensions of the unstrained thia-
zolidine ring. (Since this work was commenced, the
crystal structures of rhodanine (van der Helm, Lessor
& Merritt, 1962), merocyanine (Germain, Piret, van
Meersche & de Kerf, 1962) and thiamine hydro-
chloride (Kraut & Reed, 1962) have been published;
these compounds all contain a thiazole ring, but with
widely different substituents in each case.)

A sample of the sodium salt of PTD (Na PTD) was
kindly donated by Nicholas (Aust.) Pty Ltd.

The structural formula, showing the atom num-
bering used, is

H{3)

C(6)—C(5)
H(4)—c<(7)

H(2)
H(1) O(1)
C(4)—C(3)—C(1)~

/ N-, Nat
C(8)=C(9) S—Cl(2) -
}4(5) }-1(6) J)(z)
Experimental

Unit cell and space group

Crystals were grown from water, the saturated
solution being kept in a constant-temperature room

* Present address: Laboratory of Molecular Biology, Hills
Road, Cambridge, England.

for several weeks. The crystals always occurred as
thin, irregular plates, formed parallel to (001) and
often twinned on this plane. Cleavage parallel to (001)
was most marked, and the crystal plates could also
be split parallel to [010] in approximately the (100)
plane.

The crystal selected for rotation about the b axis
measured 0-08 x0-05 mm in cross section. Attempts
to cut or cleave crystals suitable for rotation about
other axes invariably resulted in multiple cleavage
parallel to (001); it was therefore decided to use
the b-axis crystal for all accurate intensity measure-
ments. Absorption effects were ignored, the difference
between the maximum and minimum corrections to
the Fo’s being only 4-59%. The different layers of
b-axis data were brought to an approximately common
scale by comparison with 0kl spectra recorded from
a somewhat imperfect crystal rotated about its @ axis.

From systematic absences on Weissenberg photo-
graphs, the space group was established unequivocally
as P2;/a. The lattice constants were determined by
the back-reflexion extrapolation method of Farquhar
& Lipson (1946), and are summarized in Table 1.
Assuming four molecules in the unit cell, the expected
density was 1-537 g.cm~3; the value observed by
flotation was 1-53 g.cm-3.

Table 1. Lattice constants and their standard deviations

asin f = 9-4064+0-0012 A a= 962040002 A
c sin f = 14:4302 + 0-0021 ¢ = 14-758 +0-003
B = 102° 62" £ 0-8 b = 6-751+0-002

Collection of intensity data

The intensity data for the layers A0l through %5!
were recorded by equi-inclination Weissenberg photo-
graphs taken with nickel-filtered Cu K« radiation.
The reflexions were integrated by the use of a
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mechanism attached to the film cassette, and the
multiple film technique used to bring the reflexion
densities within the linear density—intensity region.
Those reflexions of sufficient intensity were measured
photometrically (Gurr (1963) discusses the method
in more detail). The weaker intensities were estimated
from a second set of non-integrated photographs by
the method of eye estimation (in both cases, exposure
times of about 100 hr were used for each layer). The
photometered and eye-estimated intensities were
brought to a common scale by comparing reflexions
whose intensities were measurable by both methods.
All the intensities used are the average of at least
two measurements made at different times.

Within the limiting sphere for copper radiation,
there are 2107 independent reflexions. Of the 1743
theoretically observable in the layers A0l through
h5l, 1137 were observed to have a non-zero intensity,
and approximately half of these had sufficient intensity
to be photometered.

Determination of the structure

After an unsuccessful attempt using projections, the
correct structure was determined from a partial
interpretation of the three-dimensional Patterson
function. Before this calculation, the method of Wilson
(1942) was used to bring the coefficients to an ap-
proximately absolute scale, and to determine the value
of the overall temperature exponent as 2B=6-8 Az.
Then, following Lipson & Cochran (1957), the co-
efficients were ‘sharpened’ by the function (1/f)2,
where f is the average scattering factor excluding
thermal effects.

The sulphur and sodium coordinates were obtained
without difficulty from the Patterson function; also,
by searching for possible sulphur-light atom inter-
actions, three tentative light-atom positions were
found. The R index for structure factors based on
the sulphur and sodium atoms was 619%. After
inclusion, in turn, of the contributions from the three
light atoms (considered as nitrogen), the R values
were 589%, 61% and 629,. These results were taken
as an indication that the sulphur, sodium, and first
light atom had been correctly placed. (This sub-
sequently proved to be the case; in addition, the
second, but not the third, light-atom coordinates
substantially agreed with those of a real atom.)

The first three-dimensional Fourier synthesis was
calculated with the use of the signs given by the three
known atoms. In this synthesis, the method of Woolf-
son (1956) was used to weight the magnitude of each
coefficient according to the probability that its sign
was correct. From the resultant synthesis, the re-
mainder of the structure could be seen. R from the
coordinates as known at this stage was 229, for the
observed reflexions. The weighting system of Woolfson
was most successful in this application, for, although
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the lowest peak density was 26 e.A-3, the background
density did not exceed 1-3 e.A-3.

Refinement of the structure

After two further Fourier syntheses had reduced R
to 179%, subsequent refinement was by the method
of ‘differential difference’ Fourier syntheses (Cochran,
1951; Cruickshank, 1952, 1956a).

The combination of methods used to measure
intensities made it difficult to assess the reliability
of an individual F,. From a comparison of repeated
measurements it appeared, to a rough approximation,
that the F,’s had a constant absolute uncertainty.
Therefore the coefficients AF=(F,—F.) were, in
general, given unit weight. For those F,’s observed
as zero, but having |Fp|<|Fc| <2|Fn| (Fn being the
observable threshold of F,), the contribution AF=
(Fm—F.) was included. Terms for which |F¢| < |Faul,
or |Fe|>2|Fn|, were omitted from the calculation.
In the early stages of refinement, individual isotropic
temperature factors were used for each atom. The
first two refinement cycles reduced R to 13%. An
inspection of the larger F,’s suggested appreciable
secondary extinction effects; a correction of the form
described by James (1958) was therefore applied
(see below). At this stage the six hydrogen atoms,
all of which were bonded directly to the PTD molecule,
were placed geometrically by assuming a C-H bond
length of 105 A (Allen & Sutton, 1950). These
hydrogen atoms were then given the temperature
factor of their bonding carbon atom, and held constant
while the remaining heavy atoms were refined for a
further three eycles (to R=10-4%). During the final
cycle of refinement with isotropic temperature factors,
the mean coordinate shift was 0-0011 A, and the
greatest shift 0-0040 A, which was a quarter of the
corresponding coordinate standard deviation.

By now it was apparent that some of the atoms had
considerably anisotropic thermal motions, for, in some
cases, the curvatures

0%(0o— Qc)

2 —_ 2 —_
i P(go—ge) 4 Pleo—ec)

oy? 022

differed appreciably from zero (although the average
of the three curvatures was small). Evidence of this
anisotropy could also be seen in a three-dimensional
difference synthesis calculated at this stage. This
synthesis also confirmed the positions of all the
hydrogen atoms except those at the extremity
(i.e. in the vicinity of C(7)) of the benzene ring,
where the electron density was modified, presumably
by vibrational effects. The first three cycles of refine-
ment with anisotropic temperature factors (hydrogens
included but not refined) reduced R to 7-7%. Since
the hydrogen positions had been estimated from
bonding considerations, an effort was made to refine



B. W. MATTHEWS

these coordinates. No attempt was made to improve
the thermal parameters, and, to guard against
divergence, all the calculated coordinate shifts were
halved. During refinement of the hydrogen atoms
(other atoms being held constant), only those F’s
with sin 6 <0-4 were included ; for these, R remained
constant (6:0%), but the sum of squares of the
coefficients (i.e. X' (F,— F.)?, the least-squares residual)
fell from 872 to 826 during four cycles. All the co-
ordinate changes converged, the mean shift falling
from 0-055 to 0-011 A, and the greatest from 0-17
to 0-036 A.

James (1958) has suggested a secondary extinction
correction of the form

(Fz)eon. = 3/1 - 2gF§ .

By plotting (1 — F2/F?) against F2 for the more intense
reflexions, as shown in Fig. 1, 29 was determined as
3:1x10-5, and was then used to correct all the F,’s.

After three further cycles refining the heavy atom
parameters, the shifts became negligible; the mean
coordinate shift was 0-0003 A, the greatest 0-0017 A

2
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Fig. 1. Determination of the correction for
secondary extinction.

Table 2. Final positional parameters and
their standard deviations

Atom zfa y[b zfc
S 0-4433+0-0004 0-0927+0-0004 0-1933 + 0-0003
Na 0:1891+0-0005 0-:0102+0-0006 0-0236 1+ 0-0004
o(l) 0-2048 4+ 0-0009 0-6917+0-0010 0-0798 4+ 0-0007
0(2) 0-9975+0-0009 0-1003 +-0-0010  0-0986 + 0-0007
N 0-1226+0-0010  0-3769+0-0011  0-0803+ 0-0008
C(1) 0-1314+0-0011  0-5627+0-0013  0-1093 +0-0009
C(2) 0-0285+0-0011  0-2741+0-0012 0-1165+ 0-0009
C(3) 0:0510+0-0013 0-6236+0-0015 0-1838+0-0010
C(4) 0:1529+0-0014 0-6782+40-0016 0-2725+0-0011
C(5) 0:24724+0-0018 0-5374+0-0022 0-3197+0-0013
C(6) 0:3452+0-0023  0-5929+40-0029  0-4003 + 0-0015
C(7) 0:3520+0-0027 0-7834+0-0029  0-4302+0-0018
C(8) 0-2667+0-0038 0-9183+0-0027  0-3844 + 0-0020
C(9) 0:1626 +0-0023 0-8683+0-0020 0-30404-0-0014
H(l) 0-495 +0-015 0-779 +0-015 0:163 +0-012
H(2) 0250 £0-017 0:374 +0-018 0-306 +0-013
H(3) 0412 40-018 0-458 +0-020 0-432 +0-014
H(4) 0-438 +0-019 0-805 +0-020 0:501 +0-015
H(5) 0-256 +0-022 0-034 +0-019 0-402 +0-015
H(6) 0-103 +0-018 0949 +0-017 0274 +0-014
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(0-090); the greatest relative By change was 2%,
except for some of the small Bi2 and Bss, where the
absolute changes were small. Finally, the hydrogen
atom coordinates were refined for another four cycles,
during the last of which the mean shift was 0-0059 A,
and the greatest 0-019 A (0-140).

The final refined atomic parameters are listed in
Tables 2 and 3. The coordinate standard deviations
were found by using the formulae of Cruickshank
(1949), e.g.

2 62 (4
e -2 5.

Table 4 lists the observed and calculated structure
factors; for those with measurable intensities, the
final R index was 6-99%.

Table 3. Final antsotropic thermal parameters

(x 10%)

Atom By By, By, By, By By,
S 110- 269 55 17 58 9
Na 95 243 53 —14 34 14
O(1) 110 245 53 -2 37 19
0(2) 123 228 58 1 17 8
N 107 173 48 21 23 15
C(1) 91 218 45 36 13 31
C(2) 100 187 48 -5 11 2
C(3) 108 284 47 51 23 13
C4) 121 319 51 —15 37 —30
C(5) 184 506 71 106 —47 —57
C(6) 250 676 74 150 —85 —21
C(7) 266 593 82  —203 -31 —34
C(8) 395 392 80 —219 36 —58
C(9) 259 341 57 —-70 28 —12
H(l) as C(3)

H(2) as C(5)
H(3) as C(6)
H(4) as C(7)
H(5) as C(8)
H(6) as C(9)
Computations

Most computations were made on an IBM 7090
computer; however at a late stage an IBM 1620
computer became available, and was also used. All
the programs used were written by the author.

In the IBM 7090 ‘structure refinement’ program,
use was made of refinement expressions given by
Cruickshank (1952, 1956a), and Dunitz & Rollett
(1956). Individual scaling factors were necessary for
each layer of constant k; these were determined from
the criteria that XF,=XF,, and were applied to the
F,’s before the other shifts were evaluated from the
coefficients (Fo—Fe).

The atomic scattering factor curves of Berghuis,
Haanappel, Potters, Loopstra, MacGillavry & Veenen-
daal (1955) were used for Na, O, N and C; that of
Dawson (1960) for S, and that of McWeeny (1951)
for H. These were read into the computer at intervals
of 0-005 in sin 6/A and were used without interpola-
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Table 4. Observed and calculated structure factors

Within each group of constant & and k, the columns contain from left to right: I, 10F, and 10F,
An asterisk indicates the estimated minimum observable F, for reflexions which were too weask to be measured
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Table 4 (cont.)
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tion; the F.'s are therefore accurate within about 1%.
Refinement of the 14 heavy atoms with anisotropic
temperature factor parameters took 100 sec per cycle.

Discussion of the structure

The molecular arrangement
The molecules are bound together principally by
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sodium—oxygen bonds, each sodium atom being
bonded to four different PTD molecules. Figs. 2 and 3
show how this bonding links the molecules into endless
chains along the twofold screw axis (b). In this chain
formation there are, in addition to the Na-O bonds,
two Na—N bonds of length 2-73 and 2-76 A. Figs. 2
and 3 also show the intermolecular distances less
then 4 A.
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1:405
C6)—==c(5) S
1776
1-357/120:411%°4 1o 1813 9°N19.9 o)

204 118 7C(4)——C( yo29 17 1943
11- 1./1 338

1:314\121-2 1208”1103
1196/1561° | 1sa1187 1
R 1180711322
(%
O(1)

Fig. 4. Intramolecular bond lengths and angles.

Table 5. Final bond lengths and angles,
and their standard deviations

Atoms Length Atoms Angle

—C(2) 1-776 +£0-011 A S-C(3)-C(1) 102-9+1-3°

S-C(3) 1-813 +0-011 C(3)-C(1)-N 1187+ 1-6

-C(2)  1-322+0-012 C(1)-N-C(2) 1114+ 1-5

-C(1) 1-338+0-014 N-C(2)-8 115-7+1-3

(1)-C(3) 1-527+0-016 C(2)-S-C(3) 90-6 + 0-9

C(1)-0(1) 1-256+0-013 0(1)-C(1)-N 1232416

C(2)-0(2) 1-226+ 0-011 0(1)-C(1)-C(3) 118-0+1-6

C(3)-C(4) 1-507+0-018 0(2)-C(2)-N 1243+ 1-7

Fig. 2. Sodium atom bonding. C(4)-C(5) 1-395+0-020 0(2)-C(2)-8 119-9+ 1-4

C(5)-C(8) 1-405+0-025 C(4)-C(3)-C(1) 110-8+1-6

C(6)-C(7) 1-357+0-027 C(4)-C(3)-S 114-0+ 14

The phenylthiazolidine molecule gg;)—g(g) }'iéiig'ggi 88;—38;—88; igg g:tg (1)

— . i . — — i

Thfa bOI'ld lengths and fmgles of the PTD molecule 0(9;_0E4; 1-361+0-018 C(4)-C(5)-C(8) 119-4 %25

are given in Table 5, and illustrated diagrammatically C(5)-C(6)-C(7) 120-4+3-1

in Fig. 4. In some cases the coordinate s.d.’s o(z), 823;—{[1&; (1)?; ig'ig gg—gg;—gg; ig(l)éig;

. . . . 5 j— . i . — — . i .

a(y) arll;d o(2) of an atom defereddzIppreclably, this C()_H(3) 115 1015 O(8)-C(9)-C(4)  119-6.£30

was taken into account in the bon gngth and angle  ¢7)_H(4) 1.20 +0-18 C(9)-C(4)-C(5) 118-7+23
calculations by using the formulae given by Ahmed (8)-H(5) 084 +0-13
& Cruickshank (1953). The bond lengths are within C(9)-H(6) 0-85 +0-15

normal limits except for the short C(7)-C(8) bond
(1-314 A), for which the departure from the expected the significance levels of Cruickshank & Robertson
value of 1-395 A is ‘possibly significant’ in terms of (1953). All the atoms of the benzene ring have con-

Fig. 3. Intermolecular distances less than 4:0 A. Two close approaches that cannot be shown here are shown in Fig. 2.
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siderable thermal motion (‘isotropic’ refinement gave
values of ‘B’ increasing across the benzene ring from
4-4 A2 for C(4), to 9-0 A2 for C(7)). It is thought that
any apparent departures of the benzene ring from
regularity are due to this extreme thermalmotion
(Cruickshank, 1956b).

The bond lengths of the thiazolidine ring can be
satisfactorily accounted for by a combination of
resonance structures. The formula of Pauling (1948)
was used to calculate the double bond character of
each bond, the single- and double-bond lengths being

—CH—S

ot _ o
AN

I1(15%)

—CH-—S
ot
\x/

1T (45%) 111 (35%)

—CH—S8+ —CH—S+

LoLo s
O= —0- 0—C C—0O~
N N\
IV (0%) V (5%)

Fig. 5. Some canonical formulae for the thiazolidine ring.

agssumed to be C-C, 1-54; C-N-, 1-50; C=N, 1:27;
C-0-,1-45; C=0, 1-20; C-8, 1-81; and C=8+,1-61 A
(¢f. Gerdil, 1961). On combining the canonical for-
mulae in the proportions shown in Fig. 5, the cal-
culated bond lengths were found to be in good
agreement with those observed; the agreement is
shown in Table 6.

Table 6. Comparison of bond lengths of
the thiazolidine ring

The calculated bond lengths are found by using the valence
bond method in combining the canonical formulae I-V in
the proportions shown in Fig. 5

Observed Calculated

Bond length length

S-C(3) 1-81 A 1-81 A

S-C(2) 1-78 1-78
C(3)~C(1) 1-53 1-54
C(1)-N 1-32 1-33
C(2)-N 1-34 1-36
C(1)-0(1) 1-26 1-26
C(2)-0(2) 1-23 1-24

The best-fitting plane through the six benzene-ring
atoms, calculated by the least-squares method of
Schomaker, Waser, Marsh & Bergman (1959), is

7:670x+1-420y — 10-6312=0-753

where the distance from this plane to the origin is
0-753 A. None of the atoms depart significantly from
planar, the individual deviations being as follows:
C4), —0-007; C(5), 0-:014; C(6), —0-012; C(7), —0-007;
C(8), 0-017; C(9), 0-002 A.
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The best plane through the five thiazolidine ring
atoms (S, C(3), C(1), N, C(2)) is

—5-536x42:013y —9-:2092=0-651 .

The departures from planarity of the ring atoms,
and the attached O(1) and O(2) atoms, are as follows:
S, 0-0045; C(3), —0-069; C(1), 0-050; N, —0-009;
C(2), —0-028; O(1), 0-176; O(2), —0-041 A. In this
case the departures of C(1) and C(3) are considerable.
In order to test whether the ring is, in fact, significantly
aplanar, the y2 test was applied (Wheatley, 1953).
Summing over the five ring atoms, y2=61-2. From
the table of Fisher (1954), this corresponds to a
probability P less than 0-01 that the observed value
of x2 is due to chance. The ring is, therefore, sig-
nificantly aplanar. The plane through the four atoms
involved in resonance (i.e. S, C(1), N, C(2)) is

—5-697x41-757y —9-:3192=0-768 .

In this case the departures are much less, wiz. S,
—0-0002; C(1), 0-0003; N, —0-004; C(2), 0-005 A.
Summing over these four atoms, y2=0-44, and the
corresponding value of P (=0-50) does not imply any
significant departure from planarity. The other three
atoms of interest have the following deviations from
the plane: C(3), —0-134; O(1), 0-095; 0(2), 0-040 A.
The best plane through the six atoms S, C(1), N, C(2),
O(1) and O(2) (i.e. excluding C(3)) was also found.
In this case y42=61-3, indicating highly significant
aplanarity.

Thermal vibrations

In order to examine the anisotropy of the atomic
vibrations more conveniently, the vibrations were
expressed in terms of the principal axes of the ellipsoids
of vibration by using the transformation of Rollett
& Davies (1955). Table 7 lists the parameters of the
vibration ellipsoids which are defined by expressing
the temperature factors in the form

T=exp[—% %‘ Bi(hgua* + kg2b* + lgi3c*)2] .

The B; are the lengths of the principal axes, and the
ga1, giz and g;3 are the direction cosines of these axes
with respect to a*, b* and c*. As might be expected,
the more tightly bound thiazolidine ring atoms have
smaller thermal motions than those in the benzene
ring, which is only bonded at C(4). At the extremity
of the benzene ring the anisotropy is considerable,
with, in general, the directions of minimum motion
not far from parallel to the C(3)-C(4) bond, as might
be anticipated.

I should like to thank Drs S. G. Tomlin and E. H.
Medlin for their supervision and practical guidance,
and Dr G. E. Gurr for helpful advice during the early
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stages of this work. I am indebted to the Australian
Atomic Energy Commission, and the Imperial Chem-

Table 7. Principal axis thermal parameters

Atom % B; (A?) [13 Giz 9is
S 1 1-37 0-790 —0-055 —0-432
2 2-15 0-447 0-733 0-595
3 1-96 0-420 —0-678 0-678
Na 1 1-38 0-944 0-213 —0-049
2 1-99 0-018 0-731 0-670
3 1-76 0-330 —0-648 0-741
O(1) 1 1-60 0-846 0-279 —0-266
2 2-02 0-130 0-718 0-696
3 174 0517  —0-638 0-667
0(2) 1 1-70 0-664 —0-626 0-539
2 1-77 0-602 0-772 0-325
3 2-22 —0-443 0-111 0-777
N 1 1-62 0-887 0-407 0-398
2 1-26 —0-349 0-900 —0-328
3 1-75 —0-301 0-155 0-857
C(1) 1 1-16 0-769 — 0469 0-587
2 1-88 0-102 0-761 0-648
3 1-64 —0-632 —0-448 0-486
c©) 1 1-39 0-853 0-293 0-601
2 1-44 —0-227 0-954 —0-241
3 1-86 —0-470 0-071 0-762
c(3) 1 1-46 0853  —0-352 0555
2 2-29 0-366 0-930 0-114
3 1-70 —0-371 0-109 0-824
c4) 1 1-79 0-981 0160 0310
2 2-53 —0-122 0-948 —0-313
3 1-67 —0-148 0-276 0-898
C(5) 1 1-70 0-740 —0-007 0-813
2 4-76 0-493 0-685 —~0-420
3 310 —0-457 0-728 0-404
C(6) 1 4-44 0-459 —0-729 —0-400
2 6-10 0-574 0-680 —0-326
3 1-69 0-678 —0-082 0-857
C(7) 1 217 0-655 0-315 0-687
2 5-63 0-673 —0-565 —0:341
3 4:06 —0-343 —0-686 0-642
o(8) 1 644 0930  —0-302  —0-009
2 2-22 0-366 0-718 0-656
3 3-24 —0-029 —0-627 0-755
C(9) 1 4-08 0-941 —0-239 —0-037
2 2-55 0-177 0-951 —0-212
3 1-96 0-289 0-198 0-976

THE CRYSTAL STRUCTURE OF PHENYLTHIAZOLIDINEDIONE

ical Industries of Australia and New Zealand for the
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